Region of Waterloo 2018 Biosolids Strategy at a Glance

April 2018

www.regionofwaterloo.ca/biosolids
Welcome to the 2018 Biosolids Master Plan

The Master Plan, driven by input from the community and stakeholders on the issues that matter most to them, creates a biosolids management strategy for the Region of Waterloo.

To complement the Master Plan’s technical documentation, this summary was prepared to outline the strategy at a glance. If during your reading of the summary document, you require further information, look to the blue dots at the start of each chapter heading, indicating where in the report you can find the technical breakdown related to the section.

The steps undertaken during the study to develop the Biosolids Master Plan are outlined in this document, along with the resulting recommendation to develop storage facilities to support current operations in the short term, and a new processing facility to be located in the Region to produce dried, low volume fertilizer in the long term. The Master Plan sets the stage for community engagement in future Class Environmental Assessments to site this long term facility.

It is hoped the information provided here helps you understand the issues considered in developing the biosolids strategy, and the Region of Waterloo’s plan to manage this material to 2051.

April 2018
Table of contents

1. What is this master plan? 1
2. Biosolids management in Waterloo Region today . . . 3
3. The making of a strategy 5
4. Community engagement 7
5. Methodology ... 9
6. The long list of alternatives 11
7. The short list of alternatives 13
8. Evaluating the short list 16
9. The preferred alternative 22
10. What is the process to implement this strategy? . . . 23
11. Stay involved .. 24
Introduction

The Region of Waterloo Strategic Plan (2015-2018) has identified the Biosolids Master Plan as a key component of its Environment and Sustainable Growth Focus Area.

The Region has embarked on a comprehensive process to develop a new Biosolids Master Plan, taking the interests of key stakeholders and the public to heart in order to identify the most suitable solutions for the whole community. The resulting Biosolids Strategy takes a critical look at today’s practices, considers all applicable technologies, and develops a way to manage biosolids within the Region to the year 2051.

What are biosolids?

Biosolids are the processed organic material that remains after the treatment of our wastewater.

Wastewater we generate is transported through a series of pipelines to a sewage treatment plants across the Region. Inside each plant, a series of processes are performed.

- **Water is separated and treated, and the clean water is returned to the environment.**
- **The separated material is also treated; biosolids are the remaining product.**
- **Biosolids can be applied to a range of uses, or disposed of as described on the following page.**
What can we do with biosolids?

Biosolids can be used for a range of purposes, as described below. Generally, biosolids are added to soil or used as an energy source. Otherwise, they are disposed of in a licensed landfill. **Uses** resulting in direct economic or environmental benefit are common and can include:

Agricultural

Biosolids that meet Provincial and Federal quality standards can be applied to crop lands as a nutrient source. Key considerations include the quality of the biosolids produced, available lands for application, potential presence of substances of concern, trucking, the need to store biosolids in the winter, and application limits and restrictions.

Non-agricultural

This use includes biosolids application to forested areas to improve nutrient supply to the soil, enhancing degraded lands such as on mine tailings areas, and use as daily cover material for landfills. Key considerations include the quantity of biosolids produced, the availability of suitable sites for application, trucking, and the need to store biosolids awaiting transport.

Energy recovery

Energy can be recovered by burning biosolids or burning biogas generated from biosolids processing. The energy recovered depends on many factors including the processing method and the biosolids dryness. Key considerations include facility specifications, the cost of additional fuel to burn the product, and potential for air quality impacts.

Incineration

Biosolids can be reduced to ash by incineration, which generates the smallest amount of material for disposal. Key considerations include the approvals associated with an incineration facility, the cost of fuel, and potential for air quality impacts.

Landfill

Biosolids can be disposed of in landfills that are allowed to accept this material. Landfilling has historically been used for managing biosolids when other end uses and disposal options are not available. Key considerations include the possibility that existing facilities, or MOECC, will restrict landfilling biosolids in the future, costs associated with trucking biosolids to distant sites, and tipping fees.
Biosolids management in Waterloo Region today

The diagram below illustrates how biosolids are currently managed in the Region.

1. The City’s underground sewer pipes collect the water and waste material we pour down our drains. The Region processes over 180,000m³ of wastewater every day — equivalent to 2500 backyard swimming pools!

2. Wastewater Treatment Plants in the Region

3. Clean water is discharged to the river

4. Over 15,000 tonnes of liquid biosolids are generated daily — equivalent to about 70 loaded trucks every day.

5. Settled solid material is treated in a large tank that utilizes microscopic organisms. The anaerobic digesters produce methane — a renewable resource to generate electricity.

6. Disposal
 In 2016, 15% of biosolids produced in the Region were disposed of in approved landfills outside the Region of Waterloo.

Soil Amendment
In 2016, 85% of the Region’s biosolids were used as a soil amendment to add nutrients, improve soil quality and enhance crop growth on agricultural and non-agricultural lands.

After digestion the biosolids are spun in a centrifuge to remove more excess liquid much like the spin cycle on a clothes washer, making it easier to handle and transport. The dewatering process means that for every 12 trucks we use to need, we now only need 1.
Transporting biosolids in the Region

Trucking is an important part of biosolids management in the Region today. There are two types of trips: trips between wastewater treatment plants for further processing of biosolids, and trips out of the Region for end use or disposal of processed biosolids.

Types of Wastewater Treatment Plants:

- **No Biosolids Digestion**
 - Biosolids are processed at another plant
- **Aerobic Digestion of Biosolids**
 - Biosolids created in presence of air
- **Anaerobic Digestion of Biosolids**
 - Biosolids created in absence of air

Currently, most biosolids are transported out of the Region for end use or disposal.

In 2016, biosolids were transported outside of the Region for use or disposal as:

- **45%** Agricultural soil amendment
- **40%** Non-agricultural soil amendment
- **15%** Landfill
The making of a strategy

Why do we need a strategy?

Growth
The Region of Waterloo is expected to grow and this means more biosolids.

Security
The Region needs flexibility and adaptability to plan for emergencies, manage risk, and tackle mid- to long-term biosolids storage needs.

Environmental Constraints
Environmental and social constraints must be considered, including land availability, possible uses, climate change, and transportation routes.

Regulatory Changes
Updates to regulations can restrict how we use biosolids.

Innovation
The Region should consider feasible new technologies and scientific advances that present opportunities for innovation.

Increasing Costs
As the costs associated with trucking, storage and disposal of biosolids will continue to rise, it is important to consider the best value to the Region.

Region of Waterloo’s approach

The Biosolids Strategy follows the Municipal Class Environmental Assessment process for master plans, to develop the most suitable biosolids management approach for the Region.

Guiding Principles
Emphasize public engagement and participation from the community.
Identify a long-term, flexible, secure, and sustainable strategy for the Region.
Broadly consider all possible alternatives in developing the strategy.

Project Organization
The strategy has been developed by the Region’s Water Services division, along with an external consultant team. Committees supporting the development of the strategy include the Steering, Stakeholder, and Project Technical Advisory Committees.
Spotlight on Security for the Biosolids Strategy:
The need for storage

The Region currently does not have storage facilities for biosolids. There are two key types of storage needed:

1) Operational Storage: More Immediate Need
 • Provides security during short-term emergencies
 • Located at or near existing treatment plants, to hold up to 10 days’ worth of dewatered biosolids
 • Holds material awaiting final processing or end use/disposal

2) Product Storage: Future Long-Term Need
 • Provides security if inclement weather results in transportation challenges
 • Located along with a new processing facility to hold approximately four months’ worth of processed biosolids
 • Holds material awaiting transportation to the final end use or disposal destination

In the future, the way we store biosolids will depend on how much water is contained in the material.

The type of processing can reduce or increase the quantity of liquid by different amounts. However, reducing the amount of biosolids is a key part of the Region’s management approach. Depending on how much liquid the biosolids contains, the volume of material would vary, and so would the type of product storage needed.

Types of storage facilities

Outdoor Facility
If more than 75% liquid

For very wet material, an outdoor facility could be used, such as a tank with a flexible covering or lagoon with protective berms and liners to prevent biosolids from leaking out.

Indoor Facility
If less than 75% Liquid

For drier material, an indoor facility could be used, such as a shed or tension-fabric storage unit.

“We are all involved in creating biosolids, so we should all be involved in determining what we do with them as a community. The most suitable strategies take the whole community’s interests to heart and we need the public to help us identify the solutions that fit.”

— Kaoru Yajima, Water Services Project Manager at the Region of Waterloo
Community engagement

Biosolids Strategy Project Charter

The Project Charter was developed to act as a guiding document for the project. It provides background information and serves as a reference tool for project team members and the public throughout the process, describing the scope and intent of the project.

Principles of Engagement

The Region of Waterloo is committed to engaging citizens and collaborating with community partners to foster a meaningful and open conversation. The Biosolids Strategy Guiding Principles for engagement are:

- Accountability
- Responsiveness
- Inclusivity and accessibility
- Respect
- Transparency
- Clarity and simplicity

Extensive Community Engagement

The Strategy development process emphasized community input and participation at multiple points to help identify values important to the public. Early and intensive engagement fundamentally shaped the course of the strategy and contributed to the development of the Issues that Matter, which became the Strategy Objectives and Evaluation Criteria.

Launch Event, November 17, 2015

Key stakeholders in the consultation process

Groups invited to provide input, feedback, and direction on the Biosolids Strategy include:

- Community members
- Elected officials
- Regulatory bodies
- Technical experts
- Academic advisors
- Indigenous communities
- Community-based organizations
- Business and industry experts
- Agricultural groups
- Health, environmental, and scientific experts
- Municipal staff
- Students and youth
Public engagement at a glance

Engagement Opportunities

- **Biosolids Bulletin**
- **email updates**
- **Biosolids Project website**
- **Public consultation events & workshops**
- **Surveys**
 - Online, in-person & telephone
- **Online/multimedia**
 - Open Town Hall Tool, videos, webinar & educational materials
- **Social Media**
 - Facebook, Twitter

Responses in a Telephone Survey

- 502 responses

Four Online Surveys

- With almost 500 responses

Public Consultation Centre, March 23, 2017

Eight Attendees at Public Consultation Centres

Science Fair, April 4, 2017

Engagement with 400+ Grade 7 & 8 students

Pop-up Events with over 1650 Interactions

Science Fair

- 13 events
- through an activity presented at a

Insightful & knowledgeable Keynote Speakers:

- CBC’s Bob McDonald
- Author David Waltner-Toews
- & The Water Brothers

- Bob McDonald at Launch Event encouraging the audience to get involved, November 17, 2015

865 Colouring Books handed out to Children
Objectives-based evaluation

Methodology

The following roadmap outlines key phases in developing the Biosolids Strategy:

Stage 1: Defining Biosolids & Project Launch
- Project launch
- Problem Statement
- Vision and Project Charter

Stage 2: Defining the Issues that Matter
- Collect data
- Review existing conditions
- Consult community on the issues that matter

Stage 3: Project Objectives & Long List of Strategy Alternatives
- Formulate Project Objectives
- Establish decision making framework
- Develop long list of strategy alternatives

Stage 4: Short List of Strategy Alternatives
- Use Minimum Performance Questions to evaluate the long list of alternatives
- Identify short list of alternatives

Stage 5: Preferred Alternative
- Evaluate the short listed strategies using the objectives-based Evaluation Criteria.

Stage 6: Our Strategy
- Refine the Strategy

Region of Waterloo Council will make the final decision to adopt the strategy at the end of the process. Once adopted, there will be a 30-day review period of the master plan for public comment.
Objectives from issues that matter

Issues that matter were identified through public consultations and helped establish seven objectives that all alternatives must align with, through an objectives-based evaluation process. These project objectives include:

Work collaboratively with the community to find solutions.
Provide multiple opportunities for public engagement and input in the decision-making process.

Align with existing biosolids infrastructure and management.
The Region has significant investment in infrastructure and a strategy that maximizes this investment is preferred.

Protect the natural environment.
The preferred strategy should minimize impacts to the environment and surroundings.

Protect health and safety.
The strategy should support healthy living for both workers and the public.

Minimize and manage operational risk.
The preferred strategy must allow the Region to provide continual, uninterrupted biosolids management service to the public.

Protect quality of life.
Maintaining the existing quality of life for citizens should be considered when planning for biosolids infrastructure.

Be cost effective and provide value.
The cost of the preferred strategy must be reasonable to the Region, both now and in the future.

What is an objectives-based evaluation?

An objectives-based evaluation approach reflects a desire to achieve a particular vision or outcome defined by integrated environmental, social and economic objectives.

In the case of the Biosolids Strategy, alternatives are evaluated according to objectives, outlined on the left. The alternative with the closest alignment will be recommended for the Region’s preferred strategy.
The long list of alternatives

After a review of all available technological options, and with input received directly from biosolids technology providers through a Request for Information process, the Region developed the following eight alternatives for managing biosolids:

Current approach with expanded capacity
The current approach provides stable biosolids management. Biosolids are used for their nutrient value on fields or used for land reclamation, or landfilled when these options are not available.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Current digestion (expansion with population growth)
- **New product storage facility size**: Large
- **Change in output volume from current dewatering process**: No change
- **End Uses & Disposal**: Agricultural soil amendment, non-agricultural soil amendment, landfill

Current approach with solids preparation before digestion
This alternative can reduce the total solids by generating more biogas, and reduce the amount of liquid in the dewatered biosolids, with a similar end product.

- **Solids preparation/modification**: Thickening technology (new infrastructure)
- **Biosolids processing**: Current digestion (less expansion with population growth)
- **New product storage facility size**: Large
- **Change in output volume from current dewatering process**: No change
- **End Uses & Disposal**: Agricultural soil amendment, non-agricultural soil amendment, landfill

Produce fertilizer
This alternative would make a fertilizer product that could be sold. Different technologies produce fertilizer products with varying volumes.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Stabilization or hydrolysis technologies (new infrastructure)
- **New product storage facility size**: Medium
- **Change in output volume from current dewatering process**: Ranges between 66% more to 33% depending on technology used
- **End Uses & Disposal**: Agricultural soil amendment, non-agricultural soil amendment, landfill

Produce compost
This alternative would add composting to the current process.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Composting technology + associated buildings (new infrastructure)
- **New product storage facility size**: Medium
- **Change in output volume from current dewatering process**: 60% less, however the bulking amendment used in the process increases the volume of material to be handled by three times
- **End Uses & Disposal**: Agricultural soil amendment, non-agricultural soil amendment, landfill
Produce dried, low volume fertilizer
This alternative would add further drying to the current process to substantially reduce the total amount of product. The product is a fertilizer that could be sold or used as renewable fuel in certain applications.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Drying technology + potential associated buildings (new infrastructure)
- **New product storage facility size**: Small
- **Change in output volume from current dewatering process**: 85% less
- **End Uses & Disposal**: Agricultural soil amendment, non-agricultural soil amendment, landfill, energy from solids, incineration

Thermal reduction with energy recovery
This alternative would ‘burn’ biosolids to ash and generate energy. Ash can be used as an industrial input, or disposed in landfill. This option requires enhanced dewatering that removes more water than the current approach and cannot be used in series with other energy recovery methods such as the existing anaerobic digesters that generate biogas used to produce heat and electricity for use at WWTPs.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Thermal reduction process + associated buildings (new infrastructure)
- **New product storage facility size**: No new storage needed
- **Change in output volume from current dewatering process**: 90% less
- **End Uses & Disposal**: Energy from solids, landfill

Thermal reduction to ash (no energy recovery)
This alternative could use the current digested and dewatered biosolids as input and burn this to ash for use as an industrial input, or disposal in landfill.

- **Solids preparation/modification**: Thickening (new infrastructure)
- **Biosolids processing**: Incinerator + associated buildings (new infrastructure)
- **New product storage facility size**: No new storage needed
- **Change in output volume from current dewatering process**: 90% less
- **End Uses & Disposal**: Incineration, landfill

Landfill all biosolids
This alternative would send all biosolids produced in the Region to a Provincially approved landfill. Existing infrastructure such as dewatering and digestion would need to be expanded with population growth.

- **Solids preparation/modification**: Current dewatering (expansion with population growth)
- **Biosolids processing**: Current digestion (expansion with population growth)
- **New product storage facility size**: No new storage needed
- **Change in output volume from current dewatering process**: No change
- **End Uses & Disposal**: Landfill

* All alternatives require operational storage (see page 6) to be implemented for contingency purposes.
The short list of alternatives

To narrow down the long list of eight alternatives to a short list, the Region of Waterloo applied a series of Minimum Performance Questions to each alternative based on the project objectives. The questions were built from the issues that matter, as described on Page 10. For an alternative to pass this screening step and become part of the short list of alternatives, it had to provide a ‘yes’ to all the questions below:

Community Impact & Values
No specific evaluation criteria applied. This objective is addressed through the development of the strategy and is integrated into each stage of the screening process.

Infrastructure Needs
- Is it compatible with the Region’s existing wastewater treatment infrastructure?
- Is it based on commercially proven technology that provides a long term solution?

Environment
- Does it meet current environmental regulations and is it capable of meeting permitting requirements?
- Does it align with best practices in the field of biosolids management?

Health & Safety
- Does it meet current health and safety regulations?
- Does it align with best practices in the field of biosolids management?

Operational Risk
- Can the Region control all the necessary elements of implementation?
- Can the storage requirements be permitted in the Region?

Quality of Life
- Does it protect the quality of life for citizens regardless of where it is built?

Cost & Value
No specific evaluation criteria applied. This objective will be addressed through specific criteria for the short-listed strategies.
Evaluation of alternatives using minimum performance questions

- **Short listed**
 - **Current Approach with Expanded Capacity**: Requires significant storage and the addition of a new facility.
 - **Current Approach with Solids Preparation before Digestion**: Slightly reduces volume, but still requires significant storage and the addition of a new facility.
 - **Produce Fertilizer**: Produces a fertilizer product that could be sold. Focus would be on technologies that reduce the volume of biosolids.
 - **Produce Compost**: Produces compost, reducing volume of biosolids (but increases overall volume due to bulking amendment material) and resulting in an environmentally beneficial product.
 - **Produce Dried, Low Volume Fertilizer**: Adds drying process to substantially reduce total amount of biosolids. Product is a fertilizer that could be sold or used as fuel in certain applications.
 - **Thermal Reduction to Ash**: Reduces the current digested biosolids to ash for use as an industrial input, or disposal in landfill.
 - **Thermal Reduction with Energy Recovery**: Does not align with the Region’s existing infrastructure. Region is planning to recover energy from biosolids through biogas generation, leaving insufficient energy to make this alternative viable.
 - **Landfill All Biosolids**: Does not align with Canadian best practices policy in the area of biosolids management.

- **Continue in immediate future**
 - **Evaluate of alternatives using minimum performance questions**

- **Not short listed**
 - **Produce Dried, Low Volume Fertilizer**: Requires significant storage and the addition of a new facility.
The short list at a glance

Produce Fertilizer
This alternative would make a fertilizer product. Different technologies produce fertilizer products of varying volumes and quality. The focus will be on technologies that reduce the volume of biosolids, such as stabilization or hydrolysis. The facility would have space to store 4 months’ of finished fertilizer product. This alternative could be built as either a single larger centralized facility (Option A) or four smaller decentralized facilities (Option B).

Produce Compost
This alternative would transform biosolids into a Category A compost that consists of 25% biosolids mixed with other organic material such as wood chips. Different technologies can produce compost products of slightly varying volumes and quality. The facility would have a compost processing and curing area. The facility would have space to store four months’ of compost product.

Produce Dried, Low Volume Fertilizer
This alternative would add further drying to the Region’s current biosolids management process to substantially reduce the total amount of product. The product would be a dried product that could be used as a fertilizer or fuel in certain applications. The facility would have space to store 4 months’ of dried product. This alternative could be built as either a single larger centralized facility (Option A) or four smaller decentralized facilities (Option B).

Thermal Reduction to Ash (No Energy Recovery)
This alternative would reduce the current digested and dewatered biosolids to ash for use as an industrial input such as in cement, or disposal in landfill. A limited amount of storage would be needed for this alternative. In the Region of Waterloo, there is no current industrial use for the ash so the product would likely be landfilled.
Evaluating the short list

The alternatives that satisfied the Minimum Performance Questions on Page 13 were assessed using a series of Short List Evaluation Criteria, which were also developed from the issues that matter and with community input.

Community Impact & Values

Working with the community to find solutions is a guiding principle of the project, and is addressed through the development of the strategy and integrated into each stage of the screening process.

Short list evaluation criteria

Infrastructure Needs

- Compatibility with existing Regional wastewater and biosolids processing infrastructure
- Requirements for new supporting municipal infrastructure (e.g., roads, power, water, etc.)
- Alignment with future municipal initiatives
- Adaptability to changing government regulations, policies, market demands, and population growth

Environment

- Environmental impacts of the facility and potential end uses
- Likelihood of energy recovery
- Adaptability to climate change impacts
- Level of greenhouse gas emissions

Health & Safety

- Potential for health risks to public and workers
- Reduction or elimination levels of undesirable biosolids components
- Potential of an accident or adverse effect

Operational Risk

- Potential for delivery disruption of processed biosolids to end use or disposal site
- Reduction of volume/mass of end product to be managed
- Susceptibility to operational disruption (e.g., maintenance, labour supply, and end product quality, management or storage)

Quality of Life

- Management of odour, dust (from process or transport), noise, visual effects, trucking
- Source water protection impacts
- Degree of likelihood that components of biosolids management can be done within Waterloo Region

Cost & Value

- Relative life cycle cost
- Carbon credit opportunities
- Local economic benefit (job creation)
- Value of biosolids end product
- Level of innovation in approach, demonstrating leadership in the area of biosolids management

1 Life Cycle Cost includes the cost of construction, commissioning, and operations to the year 2051
Produce fertilizer

Option A: Centralized facility

Lifecycle cost: $187-241 million

Trucking: 6 trucks in and approximately 7 trucks out per day

End uses: Agricultural soil amendment, non-agricultural soil amendment, landfill

Option B: Four decentralized facilities

Lifecycle cost: $285-336 million

Trucking: Approximately 13 trucks in and 7 trucks out per day

End uses: Agricultural soil amendment, non-agricultural soil amendment, landfill

Evaluating the Alternative

- Some alignment with current Regional infrastructure, with some flexibility to adapt to future change
- May result in increased volume in final biosolids product, depending on technology
- Low potential to align with other Regional management initiatives
- Option A allows for better utilization of existing infrastructure

- Identified potential risks of contamination to the surrounding environment (air, water, groundwater) that can be mitigated
- Option B may have greater environmental effects depending on the locations of the facilities
- Fairly high greenhouse gas emissions

- Good operational flexibility to manage risks related to disruptions in ability to process or manage biosolids

- Greater potential impacts to the surrounding community resulting from odour and trucking
- Noise, dust, and other nuisances can be well managed

- Well established management of any potential health and safety concerns for workers and the public
- Limited levels of risk with respect to adverse events

- Relatively high life cycle cost to implement and operate as a result of the facility size, with a higher cost associated with Option B
- Fertilizer product may be sold to generate revenue for the Region
Produce compost

Centralized facility

Lifecycle cost:
$291-342 million

Trucking:
14 trucks in and 5 trucks out per day

End uses:
Agricultural soil amendment, non-agricultural soil amendment, landfill

Conceptual Facility Layout:

Evaluating the Alternative

- Some alignment with current Regional infrastructure, however would require sourcing, management and transport of a new stream of organic bulking amendment material
- Large volume of final compost product, requiring significant storage space
- Potential to align with other Regional management initiatives
- Limited new processing equipment needed

- Large facility footprint with identified potential risks of contamination to the surrounding environment (air, water, groundwater) that can be mitigated
- Potential positive benefits in moisture and organic matter addition to soil where compost is applied
- Low levels of greenhouse gas emissions associated with processing, but high levels associated with trucking

- Large facility footprint required resulting in challenges to siting the facility

- Greater potential impacts to the surrounding community resulting from odour and trucking
- Noise, dust, and other nuisances can be well managed

- Potential for some flammability risk of the compost product
- Limited levels of risk with respect to adverse events

- Life cycle cost could range significantly depending on processing system
- Compost product may be sold to generate revenue for the Region
Produce dried, low volume fertilizer

Option A: Centralized facility

Lifecycle cost: $155 million
Trucking: 6 trucks in and 2 trucks out per day
End uses: Agricultural soil amendment, non-agricultural soil amendment, landfill, energy from solids, incineration

Option B: Four decentralized facilities

Lifecycle cost: $334 million
Trucking: 13 trucks in and approximately 2 trucks out per day
End uses: Agricultural soil amendment, non-agricultural soil amendment, landfill, energy from solids, incineration

Evaluating the Alternative

- Alignment with current Regional infrastructure, with some flexibility to adapt to future change
- Potential to align with other Regional management initiatives
- Identified lower potential risks of contamination to the surrounding environment (air, water, groundwater) that can be mitigated
- Option B may have greater effects and be more impacted by climate change depending on siting
- High levels of greenhouse gas emissions
- Operational flexibility to manage risks related to disruptions in ability to process or manage biosolids
- Potential impacts to the surrounding community resulting from odour and trucking
- Noise, dust, and other nuisances can be well managed
- More sophisticated technical process, requiring greater operating skill
- Limited levels of risk with respect to adverse events
- Life cycle cost is reasonable
- Dry fertilizer product may be sold to generate revenue for the Region
Thermal reduction to ash

Centralized facility

Lifecyle cost: $279 million
Trucking: 6 trucks in and 2 trucks out per day
End uses: Landfill

Conceptual Facility Layout:

Evaluating the Alternative

- Alignment with current Regional infrastructure, with some flexibility to adapt to future change
- Potential to align with other Regional management initiatives in the future

- Identified lower potential risks of contamination to the surrounding environment (air, water, groundwater) that can be mitigated
- High level of energy demand and greenhouse gas emissions
- End product goes directly to landfill

- Low volume of end product that is easy to manage

- Lower impacts to the surrounding community resulting from odour and trucking
- Noise, dust, and other nuisances can be well managed

- More sophisticated technical process, requiring greater operating skill
- Limited levels of risk with respect to adverse events

- Life cycle cost is reasonable
- Final ash product does not have market value and would have a cost associated with landfilling
Overall Evaluation Summary

The following is a summary of each of the four alternatives when assessed using the Short List Evaluation Criteria that are based on the Objectives-Based Evaluation approach explained on page 10.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Produce Fertilizer</th>
<th>Produce Compost</th>
<th>Produce Dried Low Volume Fertilizer</th>
<th>Thermal Reduction to Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align with existing infrastructure</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
<tr>
<td>Protect the natural environment</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
<tr>
<td>Protect health and safety</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
<tr>
<td>Minimize and manage operational risk</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
<tr>
<td>Protect quality of life</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
<tr>
<td>Be cost effective and provide value</td>
<td>![Not Well Aligned]</td>
<td>![Not Well Aligned]</td>
<td>![Well Aligned]</td>
<td>![Very Well Aligned]</td>
</tr>
</tbody>
</table>
The preferred alternative

The alternative to **Produce Dried, Low Volume Fertilizer** emerged as having the strongest alignment with the Strategy objectives.

The results of the detailed evaluation were presented to the community, and the feedback received was integrated with input from technical experts and Region staff. Based on the input obtained through the public engagement and consultation process and the results of the life cycle cost assessment, it was concluded that a centralized configuration for a new facility to produce dried, low volume fertilizer would be the preferred solution for managing biosolids in the Region in the long term. The end uses of this material would be agricultural and non-agricultural land application.

The Preferred Strategy therefore consists of this alternative as the primary component. The Region may also consider adopting other technologies to manage biosolids at the smaller wastewater treatment plants on-site in order to reduce trucking requirements to a centralized facility.

The life cycle cost of implementing this alternative is very similar to the cost of continuing with the current approach to 2051, so the Region has the flexibility to move forward with implementation at any point in the future.
What is the process to implement the strategy?

The Region’s current biosolids management approach is considered a best practice and can be continued for several years. Implementation will therefore take place in two phases:

Phase 1 (Immediate Term): Implementation of storage at existing Regional wastewater treatment facilities, within the footprint of the existing sites. This will reduce the amount of biosolids currently going to landfill, by creating space to store biosolids during winter storm events that make trucking difficult.

Phase 2 (Mid to Long Term): The Biosolids Strategy to be updated again in five to ten years to confirm that the Preferred Strategy is still the best route forward. Detailed planning for the preferred strategy would then proceed through the Municipal Class Environmental Assessment process, and the community engaged in future steps including site selection for the new facility.

Phase 2 implementation timing would be dependent on a range of factors, including (but not limited to):

- Funding Opportunities
- Regulatory Changes
- Market Conditions
- End Use Availability
- Other Factors
Stay involved

www.regionofwaterloo.ca/biosolids

If you have questions or comments, please contact:

Kaoru Yajima, P.Eng.
Senior Project Engineer
Water Services – The Regional Municipality of Waterloo
150 Frederick Street, 7th Floor
Kitchener, ON N2G 4J3
Tel: 519-575-4757 ext. 3349
Fax: 519-575-4452
TTY: 519-575-4608
Email: biosolids@regionofwaterloo.ca

Join the conversation on Facebook & Twitter
www.facebook.com/ROWWaterServices
@RegionWaterloo