Planning Process Overview

• Phase 1: Initial Screening
 - Quick assessment of feasibility of a roundabout vs other forms of traffic control based on order-of-magnitude life-cycle cost
 - Review of Screening Tool by Roundabout Coordination Committee (RCC) (Optional)
Initial Screening Tool Overview

- 5 page questionnaire designed to be completed in 3-5 hours
- Includes background information
 - Intersection location
 - Existing configuration/traffic control
 - Collision history
 - Forecasted traffic volumes
Initial Screening Tool Overview

- Includes proposed configurations for both roundabout and conventional improvements
 - Signals - #lanes, storage lengths, etc.
 - Roundabout – size, # of entry lanes, etc.
- Concept sketches of each config.
- 20-Year Life Cycle Cost Estimate
Initial Screening Tool Overview

WHAT A SCREENING TOOL IS NOT USED FOR:

- To compare safety performance
- To compare operational performance
- To determine property requirements of a roundabout
Screening Tool Guide

- Located in handout
- Information tips/sources are provided to assist proponent in filling out questionnaire
Screening Tool Question #9

Is the intersection located within a corridor that is scheduled for improvements in the 10 Year Transportation Capital Program? What is the ultimate cross-section of the approach roads?

ARE ANY OF THE APPROACH ROADS SCHEDULED FOR WIDENING IN REGION’S 10 YEAR TRANSPORTATION CAPITAL PROGRAM?

CHECK WITH TRANSPORTATION PLANNING REPRESENTATIVE OR ACCESS CAPITAL PROGRAM ON REGION WEBSITE.
Screening Tool Question #10

What is the collision history of the intersection over the past five years? Is there a collision problem that needs to be addressed?

COLLISION PROBLEM TO BE DETERMINED BY TRANSPORTATION ENGINEERING.
Screening Tool Question #13

If traffic control signals are being considered, are the traffic signal warrants met for the horizon year?

BASED ON OTM WARRANTS.

WARRANT TO BE VERIFIED BY

TRANSPORTATION ENGINEERING
Screening Tool Question #14

What size of roundabout is being considered for this intersection? (eg. Single-lane, two-lane entry or three-lane entry?)

Please attach a Traffic Flow Worksheet and lane configuration diagram. Please attach a sketch showing how a roundabout would “fit” into the right-of-way.

USE TRAFFIC FLOW WORKSHEET AND RODEL (OPTIONAL) TO DETERMINE NUMBER OF ENTRY LANES.
Screening Tool Question #14

Typical Sizes:

- **SINGLE – 40M INSCRIBED CIRCLE DIAMETER (ICD)**
- **2-LANE – 55M INSCRIBED CIRCLE DIAMETER (ICD)**
- **3-LANE – 70M INSCRIBED CIRCLE DIAMETER (ICD)**
Traffic Flow Worksheet

- Excel spreadsheet
- enter turning movements
- calcs circulating flows
- basic lane configuration

Capacity Guidelines:
1. Single Lane service volumes < 900 vph - 1200 vph
2. Exit flow < 900 vph - 1200 vph for single lane exit
3. Entry flow + circulating flow < 1400 vph use single lane entry
4. 1400 vph < Entry + Circ. flow < 2200 vph use two-lane entry
5. Entry flow + circulating flow > 2200 vph use three-lane entry

<table>
<thead>
<tr>
<th>Leg</th>
<th>PCU</th>
<th>1st Exit</th>
<th>2nd Exit</th>
<th>3rd Exit</th>
<th>U-turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>KING</td>
<td>1</td>
<td>40</td>
<td>760</td>
<td>370</td>
<td>0</td>
</tr>
<tr>
<td>KING</td>
<td>1</td>
<td>10</td>
<td>90</td>
<td>190</td>
<td>0</td>
</tr>
<tr>
<td>EAGLE</td>
<td>1</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>EAGLE</td>
<td>1</td>
<td>420</td>
<td>80</td>
<td>70</td>
<td>0</td>
</tr>
</tbody>
</table>

REGION OF WATERLOO
ROUNDABOUT TRAFFIC FLOW SHEET
VERSION 1.0 AUG 22, 2008

TRAFFIC
Worksheet
---Excel spreadsheet
---enter turning movements
---calcs circulating flows
---basic lane configuration
Traffic Flow Worksheet

STREET A

E+C = 2267

TR% 62 296 553 0

TR% 911 957

STREET B

E+C = 2,504

TR% 112

TR% 962

E+C = 0

2,504 1305

1199 972 115

STREET A

E+C = 2653

115

TR% 867

0 136 365 515

1016

STREET B

E+C = 2313

456

480 764 1700

0

2040
Traffic Flow Worksheet

Capacity Rules of Thumb:

- Entry + Circulating Flow < 1600 use single-lane entry
- 1600 < Entry + Circulating Flow < 2600 use two-lane entry
- Entry + Circulating Flow > 2600 use three-lane entry
E + C = 2267
GREATER THAN 1600 BUT LESS THAN 2600
THEREFORE USE A TWO-LANE ENTRY
Traffic Flow Worksheet

Determine Lane Configurations

- Each approach handled separately
- Add the turning movements on each approach
- Divide the total approach volume by the number of lanes
- Ensure balanced queuing and demand lane by lane by designating lanes as shared or exclusive
Traffic Flow Worksheet

Lane Assignment Calculation

- Sum the volumes: 62 + 296 + 553 = 911
- Divide the total by the number of lanes on the approach: 911/2 = 455
- 455 vehicles per lane results in even lane distribution and even queuing
- Determine what lane assignments are needed to apportion the turning flows to achieve 455 per lane
- Look for high right turns: Possible right-turn by-pass
Traffic Flow Worksheet

Lane Configuration Options

- RODEL assumes even distribution of vehicles into approach lanes and calculates queues based on this.

• HOW ABOUT THIS?

- OR THIS?
Traffic Flow Worksheet

Produce a Concept Sketch
Traffic Flow Worksheet
Example 2

Design Hour Volumes

STREET A
1262 500 53

STREET B
1100 568 480

STREET B
25 780 58

STREET A
250 340 37
Traffic Flow Worksheet

Example 2

E + C = 2903
GREATER THAN 2600
THEREFORE USE A THREE-LANE ENTRY
Traffic Flow Worksheet

Lane Assignment Calc. Example 2

- Sum the volumes: $1262 + 500 + 53 = 1815$
- Divide the total by the number of lanes on the approach: $1815/3 = 605$
- 605 vehicles per lane results in even lane distribution and even queuing
- Determine what lane assignments are needed to apportion the turning flows to achieve 605 per lane
Traffic Flow Worksheet
Example 2

Lane Configuration Options

• RODEL assumes even distribution of vehicles into approach lanes and calculates queues based on this

• IS THIS WHAT YOU WANT?
Traffic Flow Worksheet

Example 2

E + C = 2903

STREET A

E + C = 0

STREET B

E + C = 2,759

LESS THAN 2600

THEREFORE USE
A TWO-LANE ENTRY

REMOVE RIGHT TURNS USING A RIGHT-TURN BYPASS
Traffic Flow Worksheet

Lane Assignment Calc. Example 2

1262 BY-PASS 500 53

• Sum the volumes: 500+53 = 553
• Divide the total by the number lanes on the approach: 553/2 = 276
• 276 vehicles per lane results in even lane distribution and even queuing
• Determine what lane assignments are needed to apportion the turning flows to achieve 276 per lane

1262 BY-PASS 276 276
SHOW STORAGE LENGTHS FOR TURNING LINES
SHOW PROPOSED PROPERTY REQUIREMENTS
SHOW PROPERTY LINE 5m FROM EDGE OF PAVEMENT
Screening Tool Question #15

20-Year Life Cycle Cost Estimate

- Initial implementation cost
 - Construction
 - Property
 - Utilities
 - engineering

- Injury collision cost

- All costs are expressed in Present Value
Screening Tool Question #15

Initial Implementation Cost

Traditional forms of Traffic Control

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-WAY STOP INCL. FLASHERS</td>
<td>$25,000</td>
</tr>
<tr>
<td>TRAFFIC SIGNALS</td>
<td>$100,000</td>
</tr>
<tr>
<td>ADD LEFT-TURN LANE</td>
<td>$250,000</td>
</tr>
<tr>
<td>ADD RIGHT-TURN LANE</td>
<td>$150,000</td>
</tr>
<tr>
<td>MAJOR IMPROVEMENTS INCL. DUAL LTL'S, RTL'S, ADD'L THRU LANES, SIGNAL MOD., ETC.</td>
<td>$500,000-$1,000,000</td>
</tr>
</tbody>
</table>
Screening Tool Question #15

Initial Implementation Cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>$750,000</td>
</tr>
<tr>
<td>TWO-LANE</td>
<td>$1.2 MILLION</td>
</tr>
<tr>
<td>THREE-LANE</td>
<td>$1.8 MILLION</td>
</tr>
</tbody>
</table>
Injury Collision Cost

- Injury Collision Cost = expected # of injury collisions per year $\times 20$ years \times $30,000$ (TAC)
- Existing intersection: expected collisions based on 5-year history
- New intersection: expected collisions based on collisions at similar Regional intersections
- Assumption: roundabout collision frequency is 50% of signals
20-Year Present Value
Injury Collision Costs

Existing Unsignalized Intersections
and
Future Intersections
Step 1 – Determine applicable injury collision rate

- Obtain 10-year horizon AADT, # legs
- Determine average injury collision rate from table

average injury collision rate at signalized intersections (injury collisions per million vehicles entering (Coll/MVE))

<table>
<thead>
<tr>
<th>AADT Entering</th>
<th>3-legs</th>
<th>4-legs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5,000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5,001 to 10,000</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>15,001 to 20,000</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>20,001 to 25,000</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Greater than 25,000</td>
<td>0.14</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Step 2 – Determine expected annual injury collision frequency (AICF) for a proposed signal

\[AICF = 365 \times \text{injury collision rate} \times \text{AADT} / 1000000 \]
Step 3 – Calculate 20-year present value (PV) injury collision cost for a proposed signal

\[
PV_{\text{signal}} = AICF \times ICC \left(\frac{(1 + i)^{20} - 1}{i(1+i)^{20}}\right)
\]

\[
PV_{\text{roundabout}} = PV_{\text{signal}} \times 0.50
\]

Where:

- **AICF** = annual injury collision frequency
- **ICC** = injury collision cost ($30,000)
- **i** = discount rate (6% or 0.06)
20-Year Present Value
Injury Collision Costs

Existing Signalized Intersections
Step 1 – Calculate existing injury collision rate for the intersection

- Determine total 5-year historical injury collisions
- Obtain existing AADT
- Calculate specific injury collision rate
- ICR = \(\frac{\text{5 yr. injury collisions} \times 1000000}{365 \times 5 \times \text{AADT}} \)
Step 2 – Compare injury collision rates

• Compare intersection specific rate to average rate
• Determine factor higher or lower than avg. rate

average injury collision rate at signalized intersections
(injury collisions per million vehicles entering (Coll/MVE))

<table>
<thead>
<tr>
<th>AADT Entering</th>
<th>3-legs</th>
<th>4-legs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,001 to 10,000</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>15,001 to 20,000</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>20,001 to 25,000</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Greater than 25,000</td>
<td>0.14</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Step 3 – Determine expected injury collision rate (future)

- Obtain 10-year horizon AADT
- Reference 10-year horizon ICR from table
- Adjust ICR by factor higher or lower than avg.

Average injury collision rate at signalized intersections
(injury collisions per million vehicles entering (Coll/MVE))

<table>
<thead>
<tr>
<th>AADT Entering</th>
<th>3-legs</th>
<th>4-legs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5,000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5,001 to 10,000</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>15,001 to 20,000</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>20,001 to 25,000</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Greater than 25,000</td>
<td>0.14</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Step 4 – Determine expected annual injury collision frequency (AICF) for a signal (future)

AICF = 365 x factored injury collision rate x AADT / 1000000

average injury collision rate at signalized intersections
(injury collisions per million vehicles entering (Coll/MVE))

<table>
<thead>
<tr>
<th>AADT Entering</th>
<th>3-legs</th>
<th>4-legs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5,000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5,001 to 10,000</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>15,001 to 20,000</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>20,001 to 25,000</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>Greater than 25,000</td>
<td>0.14</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Step 5 – Calculate 20-year present value injury collision cost

\[
PV_{\text{signal}} = \text{AICF} \times \text{ICC} \times \frac{((1 + i)^{20} - 1)}{i(1+i)^{20}}
\]

\[
PV_{\text{roundabout}} = PV_{\text{signal}} \times 0.50
\]

Where:

- AICF = annual injury collision frequency
- ICC = injury collision cost ($30,000)
- i = discount rate (6% or 0.06)
Working Example:

- Existing 4-leg signalized intersection
- Current AADT = 12,000 vehicles/day
- 10-year horizon AADT = 17,000 vehicles/day
- 4 injury collisions over past 5 years

Therefore:

\[
\text{AICF (current)} = 0.8 \text{ injury coll/year}
\]

\[
\text{injury collision rate (current)} = 0.18 \text{ compared to 0.12 injury coll/MVE (average)}
\]

\[
\text{injury collision rate factor} = 1.5
\]

\[
\text{injury collision rate (future)} = 0.16 \text{ (from table)} \times 1.5 \text{ factor}
\]

\[
= 0.24 \text{ injury coll/MVE}
\]
20-Year present value injury collision cost

\[
\text{AICF} = \frac{365 \times 0.24 \times 17000}{1000000} = 1.49 \text{ injury coll/year}
\]

and therefore

\[
\text{PV}_{\text{signal}} = \frac{\text{AICF} \times \text{ICC} \times ((1 + i)^{20} - 1) / i(1+i)^{20}}{\text{ }_{\text{signal}}}
\]

\[
= 1.49 \times 30000 \times ((1.06)^{20} - 1) / 0.06(1.06)^{20}
\]

\[
= $512,700
\]

\[
\text{PV}_{\text{roundabout}} = $256,350
\]
Recommendations and Conclusions

- Provide a recommendation to proceed to an Intersection Control Study (ICS) or not
- Briefly explain your rationale
Questions?