Appendix C

TECHNICAL MEMORANDUM #2
Iron and Manganese Treatment Upgrades for the Shingletown Wells Class Environmental Assessment

Technical Memorandum #2
Evaluation Criteria
FINAL

Prepared for:
Region of Waterloo

This Technical Memorandum is protected by copyright and was prepared by R.V. Anderson Associates Limited for the account of the Region of Waterloo. It shall not be copied without permission. The material in it reflects our best judgment in light of the information available to R.V. Anderson Associates Limited at the time of preparation. Any use which a third party makes of this Technical Memorandum, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. R.V. Anderson Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Technical Memorandum.

RVA 184245
November 11, 2019
November 11, 2019

Region of Waterloo
Transportation and Environmental Services
150 Frederick Street, 6th Floor
Kitchener, Ontario, N2G 4J3

Attention: Nicole Sapeta

Dear Ms. Sapeta:

Re: Technical Memorandum #2 – Evaluation Criteria- FINAL
 Iron and Manganese Treatment Upgrades for the Shingletown Wells Class
 Environmental Assessment

Please see enclosed Technical Memorandum #2 as the second submittal for the
Iron and Manganese Treatment Upgrades for the Shingletown Wells Class
Environmental Assessment.

Yours very truly,

R.V. ANDERSON ASSOCIATES LIMITED

Robyn Conway, B.Eng, EIT
Process Designer

Kirk Worounig, P.Eng., PMP
Project Manager

Encls.
Technical Memorandum #2

Evaluation Criteria

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
2.0 SCORING METHOD ... 6
3.0 ALTERNATIVE SOLUTIONS EVALUATION CRITERIA 1
 3.1 Technical Criteria ... 2
 3.2 Natural Environmental Criteria .. 3
 3.3 Social, Economic and Cultural Criteria .. 4
 3.4 Financial Criteria .. 5
4.0 CONCLUSION .. 6

LIST OF TABLES

Table 1: Example Scoring Graphics ... 6
1.0 INTRODUCTION

The Shingletown Wells (Wells K50, K51 and K52) and the corresponding treatment facility are located at 2324 Bleams Road in the Township of Wilmot.

Potential water treatment upgrades have been identified based on anticipated changes to the Ontario Drinking Water Standards (ODWS). In May 2019, Health Canada issued the “Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Manganese”, which established an aesthetic objective of 0.02 mg/L. It can be noted that aesthetic objectives are intended to address non-health related items such as odour, taste, and colour. To be in line with Health Canada recommendations, it is anticipated the provincial objective for manganese will be reduced from 0.05 mg/L to 0.02 mg/L, with a design operating objective of 0.015 mg/L. The Shingletown wells were identified for potential treatment upgrades in order to consistently meet the anticipated new standard.

The Region retained R.V. Anderson Associates Limited (RVA) to complete the Class Environmental Assessment (EA) for the Iron and Manganese Treatment Upgrades for the Shingletown Wells Project.

The following technical memorandum is provided to select the evaluation criteria. The selected evaluation criteria will be used to evaluate alternative treatment solutions and alternative residual management solutions for the Shingletown Wells in Technical Memorandum #3. The criteria will also be used to evaluate the alternative design concepts for the preferred solution in Technical Memorandum #4.

2.0 EVALUATION CRITERIA

The following four categories are proposed for the evaluation of alternatives during Phase 3 of the Class EA process:

- Technical
- Natural Environmental
- Social
- Financial
The highest scoring solution or design for the natural environmental, social and financial categories represents a lesser impact or cost. Under the technical category, the highest scoring solution represents better performance.

To produce an overall score for each alternative solution/design, the scores from each category will have an equal weighting (25%).

Each of the primary categories was further subdivided into specific criteria that will be used to inform its overall score. Individual criterion within each category will be equally weighted.

The criteria to be considered for each of the four categories are described in detail in the following sections.

2.1 Technical Criteria

The technical criteria reflect those engineering considerations that relate to the design, functionality and feasibility of the proposed solutions or design concepts. These criteria are meant to evaluate how well the design solves the project goal originally outlined by the Region.

- **Provides Reliable Service**
 The solution/design should provide a reliable supply of safe drinking water. Consideration should be given to redundancy, reducing the potential for water quality upsets, minimizing operational complexity, and minimizing the risk for mechanical breakdown.

- **Meets Existing and Future Needs**
 The solution/design should provide treatment for the Shingletown Wells to meet existing treatment requirements and anticipated future aesthetic objectives for manganese.

- **Aligns with Existing and Planned Infrastructure**
 The solution/design should optimize the existing infrastructure investments, including structures, equipment and watermains. Consideration should be made for replacing assets nearing the end of their service life and optimizing the integration of recommendations with the existing water supply and distribution system. The solution or design should also consider streamlining
the treatment approach based on other Regional facilities for ease of operation.

The solution/design should not limit the flexibility to undertake future upgrades and improvements at the Shingletown Wells, at a potential treatment facility for the Shingletown Wells, or within the distribution system.

- **Aligns with Existing and Future Land Use**
 The solution/design should minimize potential impacts to existing land uses and adjacent lands. Considerations should be made for compatibility with surrounding land use under existing and anticipated future conditions.

- **Aligns with Approval and Permitting Process**
 The solution/design should minimize the complexity and time spent to obtain approvals from various regulatory agencies.

- **Manages and Minimizes Construction Risks**
 Construction of the solution/design should minimize the complexity of construction with respect to various considerations including, but not limited to manpower, staging, construction laydown areas, special equipment, energy, and schedule. The solution/design should also maximize the ability to maintain the water supply from the Shingletown Wells during construction either through staging or minimizing the duration of construction.

- **Ability to Adapt to Climate Change**
 The solution/design should promote resiliency to fluctuating weather events such as extreme temperatures, high precipitation, flooding, and high wind gusts.

2.2 Natural Environmental Criteria

Natural environmental criteria evaluate the degree to which the solution/design impacts the natural environment, with emphasis on those sensitive areas that are most critical to human or ecological functions and are most likely to be disturbed. An ideal solution/design should have the least amount of ecological impact.
• **Protects Environmental Features**
 The solution/design should protect sensitive natural features and regulated areas such as Environmentally Sensitive Areas and Areas of Natural or Scientific Interest. Potential impacts related to construction and operations should be minimized for terrestrial and aquatic habitats/features, vegetation, wetlands, wood lots, and steep slopes.

• **Protects Wildlife and Species at Risk**
 The solution/design should minimize impacts to wildlife (including species at risk) and the identified habitat for these species. The habitat includes nesting sites, hibernation areas, foraging areas, areas of wildlife travel, and migratory paths.

• **Protects Groundwater, Streams and Rivers**
 The solution/design should protect groundwater and respect the Clean Water Act requirements. Impacts on GRCA regulated floodplains should be minimized.

• **Minimizes Climate Change Impacts**
 The solution/design should minimize greenhouse gas emissions and negative impacts on the landscape which may alter the ecosystems’ ability to remove carbon dioxide from the atmosphere.

2.3 **Social Criteria**

Social criteria represent the effect a solution or design will have on the local human environment. Overall, the solution/design should have a positive effect on the functioning of the community without imposing an economic burden or altering the community’s sociocultural fabric.

• **Minimizes Impacts to Residents Related to Noise, Odour, Traffic, and Aesthetics**
 The solution/design should minimize noise, odour, and truck traffic affecting the community during operation of the Shingletown Wells facility.
The solution/design should minimize its visual profile where possible, and otherwise attempt to match the architectural patterns and landscape of the surrounding area.

- **Minimizes Impacts to Businesses**
 The solution/design should not disrupt commerce in the local community, nor should it reduce the competitiveness of local businesses.

- **Manages and Minimizes Construction Impacts**
 The construction of the solution/design should minimize impacts to surrounding areas due to significant noise, air pollution, traffic or visual disturbances.

- **Protects Cultural Heritage Features**
 The construction or operation of the solution/design should minimize potential impacts to historical, cultural, and architecturally significant features.

- **Protects Archaeological Features**
 The solution/design should minimize potential impacts to archaeological features.

- **Protects Health and Safety**
 The solution/design should minimize potential health and safety risks for the public and Operations and Maintenance staff.

2.4 Financial Criteria

Financial factors quantify the cost of the solution to the Region over its service life. All costs should be minimized.

- **Provides Low Lifecycle Costs**
 The solution/design should minimize the capital, operating, and maintenance (life cycle) costs over a 50-year period.
3.0 SCORING METHOD

A graphical-numerical scoring method, as shown in Table 1, will be used to evaluate the criteria within the four main categories. Preference for an alternative solution or design is indicated by the direction and colour of the arrow, as well as the magnitude of the numerical score. A double blue arrow represents an optimal option and a double orange arrow represents a poor alignment with the criteria objective. Table 1 below gives an example of the five possible scorings and their meanings relative to each other.

Table 1: Example Scoring Graphics

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Alignment with Criteria</td>
<td>Not Well Aligned with Criteria</td>
<td>Somewhat Aligned with Criteria</td>
<td>Well Aligned with Criteria</td>
<td>Very Well Aligned with Criteria</td>
</tr>
</tbody>
</table>

Each major category will be assigned a single score based on the combined scores of the various criteria. The scores for the categories are then combined into an overall score to provide a final assessment of the alternative solutions/designs.

For the assessment of the alternatives, scoring will be qualitative with assumptions supporting the rationale described. For the ‘Provides Low Lifecycle Cost’ criteria that cannot be evaluated qualitatively, calculations will be included in the appendix.

An alternatives evaluation workshop will be held with the consultant and Region staff to finalize the scoring for the short-listed alternative solutions. Another workshop will be completed to finalize the scoring for the alternative designs.

A sensitivity analysis will be conducted to determine if modifications to category weightings would have an impact on the identification of the preferred alternative.
Category weightings will be adjusted based on feedback received through the Public Consultation Centres regarding aspects of the project that the public has identified as important.

4.0 CONCLUSION

This study is being undertaken in accordance with the requirements of the Municipal Class Environmental Assessment which is an approved process under the *Ontario Environmental Assessment Act*.

The criteria outlined in the previous sections will be used to inform evaluations of the proposed alternative solutions identified in Phase 2 and the alternative design concepts during Phase 3 of the Study.

As part of the Municipal Class EA process, following the completion of the draft Technical Memorandum #3, a public consultation centre will take place to present the preliminary preferred treatment, the preliminary preferred residual management alternative and a preliminary short list of locations being considered for the treatment facility. These will be presented to receive input from the public. Once the preferred solution has been confirmed, alternative design concepts for the identified solution will be developed and evaluated in Technical Memorandum #4. A public consultation centre will be held to present and obtain input on the preliminary preferred design.